An introduction to the scaling limits of

 random walks via the resistance metricMini-course given at the
School of Mathematics and Statistics
University of Melbourne
August 2018

David Croydon (Kyoto University)

1. MOTIVATION

RANDOM WALK ON A PERCOLATION CLUSTER

Bond percolation on integer lattice $\mathbb{Z}^{d}(d \geq 2)$, parameter $p \in$ (0,1). E.g. $p=0.53$,

If $p>p_{c}(d)$, then the random walk is diffusive for \mathbf{P}-a.e. environment. In particular,

$$
\left(n^{-1} X_{t n^{2}}^{\mathcal{C}}\right)_{t \geq 0} \rightarrow\left(B_{c(d, p) t}\right)_{t \geq 0}
$$

See [Sidoravicius/Sznitman 2004, Biskup/Berger 2007, Mathieu/Piatnitski 2007], and also heat kernel estimates of [Barlow 2004].

PERCOLATION AT CRITICALITY?

Part of the (near-)critical percolation infinite cluster. Source:
Ben Avraham/Havlin.

INCIPIENT INFINITE CLUSTER

At $p=p_{c}(d)$, it is partially confirmed that there is no infinite cluster. Instead, study the random walk on the 'incipient infinite cluster':

$$
\mathcal{C}_{0} \mid\left\{\left|\mathcal{C}_{0}\right|=n\right\} \rightarrow \text { IIC. }
$$

Constructed in [Kesten 1986] for $d=2$, [van der Hofstad/Jarai 2004] for high dimensions.

Tree-like in high dimensions [Hara/Slade 2000], see also [Heydenreich, van der Hofstad/Hulsfhof/Miermont 2017].

SRW ON PERCOLATION AT CRITICALITY?

Random walk is subdiffusive for $d=2$ and in high-dimensions [Kesten 1986, Nachmias/Kozma 2009], see also [Heydenreich/ van der Hofstad/Hulshof 2014].

For example, for almost-every-realisation of the IIC in highdimensions, we have:

$$
\begin{gathered}
\frac{\log E_{0}^{I I C} \tau(R)}{\log R} \rightarrow 3, \\
\text { where } \tau(R)=\inf \left\{n: d_{I I C}\left(0, X_{n}^{I I C}\right)=R\right\}, \text { and } \\
\frac{\log E_{0}^{I I C} \tilde{\tau}(R)}{\log R} \rightarrow 6, \\
\text { where } \tilde{\tau}(R)=\inf \left\{n:\left|0-X_{n}^{I I C}\right|=R\right\}
\end{gathered}
$$

Scaling limit?

E.G. CRITICAL GALTON-WATSON TREES

Let T_{n} be a Galton-Watson tree with a critical (mean 1), aperiodic, finite variance offspring distribution, conditioned to have n vertices, then

$$
n^{-1 / 2} T_{n} \rightarrow \mathcal{T}
$$

where \mathcal{T} is (up to a constant) the Brownian continumm random tree (CRT) [Aldous 1993], also [Duquesne/Le Gall 2002].

Convergence in Gromov-Hausdorff-Prohorov topology implies

$$
\left(n^{-1 / 2} X_{n^{3 / 2} t}^{T_{n}}\right) \rightarrow\left(X_{t}^{\mathcal{T}}\right)_{t \geq 0}
$$

see [Krebs 1995], [C. 2008] and [Athreya/Löhr/Winter 2014].

SOME INTUITION

Suppose T is a graph tree, and X^{T} is the discrete time simple random walk on $T, \pi(\{x\})=\operatorname{deg}_{T}(x)$ its invariant measure. The following two properties are then easy to check:

- [Scale] For $x, y, z \in T$,

$$
P_{z}^{T}\left(\sigma_{x}<\sigma_{y}\right)=\frac{d_{T}\left(b_{T}(x, y, z), y\right)}{d_{T}(x, y)}
$$

- [Speed] Expected number of visits to z when started at x and killed at y,

$$
d_{T}\left(b_{T}(x, y, z), y\right) \pi(\{z\})
$$

Analogous properties hold for limiting diffusion.
cf. One-dimensional convergence results of [Stone 1963].

OTHER INTERESTING EXAMPLES

[Critical random graph] For largest connected component \mathcal{C}_{1}^{n} of $G(n, 1 / n)$:

$$
\left(\mathcal{C}_{1}^{n}, n^{-1 / 3} R_{n}, n^{-2 / 3} \mu_{n}\right) \rightarrow(F, R, \mu)
$$

cf. [Addario-Berry, Broutin, Goldschmidt
 2012]. We will show it follows that

$$
\left(n^{-1 / 3} X_{t n}^{n}\right)_{t \geq 0} \rightarrow\left(X_{t}\right)_{t \geq 0}
$$

[Uniform spanning tree in two dimensions]
 Can check that:

$$
\left(n^{-5 / 4} X_{t n^{13 / 4}}^{U S T}\right)_{t \geq 0} \rightarrow\left(X_{t}\right)_{t \geq 0}
$$

SELF-SIMILAR FRACTALS

Many of the techniques we will see are useful for random graphs/ fractals were developed for self-similar ones. E.g. [Barlow/ Perkins 1988] constructed a diffusion on the Sierpinski gasket via approximation by SRW:

$$
\left(2^{-n} X_{t 5^{n}}^{n}\right)_{t \geq 0} \rightarrow\left(X_{t}\right)_{t \geq 0}
$$

This result can also be understood via the resistance metric, e.g. [Kigami 2001].

RANDOM CONDUCTANCE MODEL AND BOUCHAUD TRAP MODEL

Random conductance model (RCM):

Equip edges of graphs with random weights $(c(x, y))$ such that

$$
P(c(x, y) \geq u)=u^{-\alpha}, \quad \forall u \geq 1
$$

for some $\alpha \in(0,1)$. Subdiffusive scaling limit for associated RW on the integer lattice [Barlow/Cerny 2011, Cerny 2011].

Symmetric Bouchaud trap model (BTM):

Add exponential holding times, mean τ_{x}, to vertices. In the case where τ is random and heavy-tailed, behaviour similar to RCM.

OUTLINE
 [and references]

1. Motivation
2. Random walks and the resistance metric on finite graphs
[Doyle/Snell 1984, Levin/Peres/Wilmer 2009, Lyons/Peres 2016]
3. Stochastic processes associated with resistance metrics [Kigami 2001, 2012]
4. Convergence results
[C./Hambly/Kumagai 2017, C. 2017+]
5. Applications

RANDOM WALKS ON GRAPHS

Let $G=(V, E)$ be a finite, connected graph, equipped with (strictly positive, symmetric) edge conductances $(c(x, y))_{\{x, y\} \in E}$. Let μ be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator Δ, as defined by:

$$
(\Delta f)(x):=\frac{1}{\mu(\{x\})} \sum_{y: y \sim x} c(x, y)(f(y)-f(x))
$$

NB. Common choices for μ are:

- $\mu(\{x\}):=\sum_{y: y \sim x} c(x, y)$, the constant speed random walk (CSRW);
- $\mu(\{x\}):=1$, the variable speed random walk (VSRW).

DIRICHLET FORM AND RESISTANCE METRIC

Define a quadratic form on G by setting

$$
\mathcal{E}(f, g)=\frac{1}{2} \sum_{x, y: x \sim y} c(x, y)(f(x)-f(y))(g(x)-g(y))
$$

Note that (regardless of the particular choice of μ,) \mathcal{E} is a Dirichlet form on $L^{2}(\mu)$, and

$$
\mathcal{E}(f, g)=-\sum_{x \in V}(\Delta f)(x) g(x) \mu(\{x\})
$$

Suppose we view G as an electrical network with edges assigned conductances according to $(c(x, y))_{\{x, y\} \in E}$. Then the effective resistance between x and y is given by

$$
R(x, y)^{-1}=\inf \{\mathcal{E}(f, f): f(x)=1, f(y)=0\}
$$

R is a metric on V, e.g. [Tetali 1991], and characterises the weights (and therefore the Dirichlet form) uniquely [Kigami 1995].

SUMMARY

RANDOM WALK X WITH GENERATOR \triangle

\downarrow

DIRICHLET FORM \mathcal{E} on $L^{2}(\mu)$

\downarrow

RESISTANCE METRIC R AND MEASURE μ

RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F be a set. A function $R: F \times F \rightarrow \mathbb{R}$ is a resistance metric if, for every finite $V \subseteq F$, one can find a weighted (i.e. equipped with conductances) graph with vertex set V for which $\left.R\right|_{V \times V}$ is the associated effective resistance.

EXAMPLES

- Effective resistance metric on a graph;
- One-dimensional Euclidean (not true for higher dimensions);
- Any shortest path metric on a tree;
- Resistance metric on a Sierpinski gasket, where for 'vertices’ of limiting fractal, we set

$$
R(x, y)=(3 / 5)^{n} R_{n}(x, y)
$$

then use continuity to extend to whole space.

RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one correspondence between resistance metrics and a class of quadratic forms called resistance forms.

The relationship between a resistance metric R and resistance form $(\mathcal{E}, \mathcal{F})$ is characterised by

$$
R(x, y)^{-1}=\inf \{\mathcal{E}(f, f): f \in \mathcal{F}, f(x)=1, f(y)=0\}
$$

Moreover, if (F, R) is compact, then $(\mathcal{E}, \mathcal{F})$ is a regular Dirichlet form on $L^{2}(\mu)$ for any finite Borel measure μ of full support. (Version of the statement also hold for locally compact spaces.)

RESISTANCE FORM DEFINITION, e.g. [KIGAMI 2012]

[RF1] \mathcal{F} is a linear subspace of the collection of functions $\{f$: $F \rightarrow \mathbb{R}\}$ containing constants, and \mathcal{E} is a non-negative symmetric quadratic form on \mathcal{F} such that $\mathcal{E}(f, f)=0$ if and only if f is constant on F.
[RF2] Let \sim be the equivalence relation on \mathcal{F} defined by saying $f \sim g$ if and only if $f-g$ is constant on F. Then $(\mathcal{F} / \sim, \mathcal{E})$ is a Hilbert space.
[RF3] If $x \neq y$, then there exists an $f \in \mathcal{F}$ such that $f(x) \neq f(y)$.
[RF4] For any $x, y \in F$,

$$
\sup \left\{\frac{|f(x)-f(y)|^{2}}{\mathcal{E}(f, f)}: f \in \mathcal{F}, \mathcal{E}(f, f)>0\right\}<\infty
$$

[RF5] If $\bar{f}:=(f \wedge 1) \vee 0$, then $f \in \mathcal{F}$ and $\mathcal{E}(\bar{f}, \bar{f}) \leq \mathcal{E}(f, f)$ for any $f \in \mathcal{F}$.

SUMMARY

RESISTANCE METRIC R AND MEASURE μ
\downarrow
RESISTANCE FORM $(\mathcal{E}, \mathcal{F})$, DIRICHLET FORM on $L^{2}(\mu)$
\downarrow
STRONG MARKOV PROCESS X WITH GENERATOR \triangle, where

$$
\mathcal{E}(f, g)=-\int_{F}(\Delta f) g d \mu .
$$

A FIRST EXAMPLE

Let $F=[0,1], R=$ Euclidean, and μ be a finite Borel measure of full support on $[0,1]$. Define

$$
\mathcal{E}(f, g)=\int_{0}^{1} f^{\prime}(x) g^{\prime}(x) d x, \quad \forall f, g \in \mathcal{F}
$$

where $\mathcal{F}=\left\{f \in C([0,1]): f\right.$ is abs. cont. and $\left.f^{\prime} \in L^{2}(d x)\right\}$. Then $(\mathcal{E}, \mathcal{F})$ is the resistance form associated with ($[0,1], R$). Moreover, $(\mathcal{E}, \mathcal{F})$ is a regular Dirichlet form on $L^{2}(\mu)$. Note that

$$
\mathcal{E}(f, g)=-\int_{0}^{1}(\Delta f)(x) g(x) \mu(d x), \quad \forall f \in \mathcal{D}(\Delta), g \in \mathcal{F}
$$

where $\Delta f=\frac{d}{d \mu} \frac{d f}{d x}$, and $\mathcal{D}(\Delta)$ contains those f such that: f^{\prime} exists and $d f^{\prime}$ is abs. cont. w.r.t. $\mu, \Delta f \in L^{2}(\mu)$, and $f^{\prime}(0)=$ $f^{\prime}(1)=0$.

If $\mu(d x)=d x$, then the Markov process naturally associated with Δ is reflected Brownian motion on $[0,1]$.
3. CONVERGENCE OF RESISTANCE METRICS AND STOCHASTIC PROCESSES

MAIN RESULT [C. 2016]

Write \mathbb{F}_{c} for the space of marked compact resistance metric spaces, equipped with finite Borel measures of full support. Suppose that the sequence $\left(F_{n}, R_{n}, \mu_{n}, \rho_{n}\right)_{n \geq 1}$ in \mathbb{F}_{c} satisfies

$$
\left(F_{n}, R_{n}, \mu_{n}, \rho_{n}\right) \rightarrow(F, R, \mu, \rho)
$$

in the (marked) Gromov-Hausdorff-Prohorov topology for some $(F, R, \mu, \rho) \in \mathbb{F}_{c}$.

It is then possible to isometrically embed $\left(F_{n}, R_{n}\right)_{n \geq 1}$ and (F, R) into a common metric space $\left(M, d_{M}\right)$ in such a way that

$$
P_{\rho_{n}}^{n}\left(\left(X_{t}^{n}\right)_{t \geq 0} \in \cdot\right) \rightarrow P_{\rho}\left(\left(X_{t}\right)_{t \geq 0} \in \cdot\right)
$$

weakly as probability measures on $D\left(\mathbb{R}_{+}, M\right)$.
Holds for locally compact spaces if $\lim \sup _{n \rightarrow \infty} R_{n}\left(\rho_{n}, B_{R_{n}}\left(\rho_{n}, r\right)^{c}\right)$ diverges as $r \rightarrow \infty$. (Can also include 'spatial embeddings'.)

PROOF IDEA 1: RESOLVENTS

For $(F, R, \mu, \rho) \in \mathbb{F}_{c}$, let

$$
G_{x} f(y)=E_{y} \int_{0}^{\sigma_{x}} f\left(X_{s}\right) d s
$$

be the resolvent of X killed on hitting x. NB. Processes associated with resistance forms hit points.

We have [Kigami 2012] that

$$
G_{x} f(y)=\int_{F} g_{x}(y, z) f(z) \mu(d z)
$$

where

$$
g_{x}(y, z)=\frac{R(x, y)+R(x, z)-R(y, z)}{2} .
$$

Metric measure convergence \Rightarrow resolvent convergence \Rightarrow semigroup convergence \Rightarrow finite dimensional distribution convergence.

PROOF IDEA 2: TIGHTNESS

Using that X has local times $\left(L_{t}(x)\right)_{x \in F, t \geq 0}$, and

$$
E_{y} L_{\tau_{A}}(z)=g_{A}(y, z)=\frac{R(y, A)+R(z, A)-R_{A}(y, z)}{2}
$$

can establish via Markov's inequality a general estimate of the form:
$\sup _{x \in F} P_{x}\left(\sup _{s \leq t} R\left(x, X_{s}\right) \geq \varepsilon\right) \leq \frac{32 N(F, \varepsilon / 4)}{\varepsilon}\left(\delta+\frac{t}{\inf _{x \in F} \mu\left(B_{R}(x, \delta)\right)}\right)$,
where $N(F, \varepsilon)$ is the minimal size of an ε cover of F.

Metric measure convergence \Rightarrow estimate holds uniformly in $n \Rightarrow$ tightness (application of Aldous' tightness criterion).

Similar estimate also gives non-explosion in locally compact case.
4. APPLICATIONS

TREES

For any sequence of graph trees $\left(T_{n}\right)_{n \geq 1}$ such that

$$
\left(V\left(T_{n}\right), a_{n} R_{n}, b_{n} \mu_{n}\right) \rightarrow(\mathcal{T}, R, \mu)
$$

it holds that

$$
\left(a_{n}^{-1} X_{t a_{n} b_{n}}\right)_{t \geq 0} \rightarrow\left(X_{t}\right)_{t \geq 0}
$$

- Critical Galton-Watson trees with finite variance conditioned on size, $a_{n}=n^{1 / 2}, b_{n}=n$.
- Uniform spanning tree in two dimensions, $a_{n}=n^{5 / 4}, b_{n}=n^{2}$, e.g. after 5,000 and 50,000 steps (picture: Sunil Chhita).

- Many other interesting models...

CONJECTURE FOR CRITICAL PERCOLATION

Bond percolation on integer lattice \mathbb{Z}^{d} :

At criticality $p=p_{c}(d)$ in high dimensions, incipient infinite cluster (IIC) conjectured to have same scaling limit as GaltonWatson tree, e.g. [Hara/Slade 2000]. So, expect

$$
\left(\mathrm{IIC}, n^{-2} R_{\mathrm{IIC}}, n^{-4} \mu_{\mathrm{IIC}}\right)
$$

to converge, and thus obtain scaling limit for random walks. cf. recent work of [Ben Arous, Fribergh, Cabezas 2016] for branching random walk. NB. Diffusion scaling limit constructed in [C. 2009].

RANDOM WALK SCALING ON CRITICAL RANDOM GRAPH

Consider largest connected component \mathcal{C}_{1}^{n} of $G(n, 1 / n)$:

It holds that:

$$
\left(\mathcal{C}_{1}^{n}, n^{-1 / 3} R_{n}, n^{-2 / 3} \mu_{n}\right) \rightarrow(F, R, \mu)
$$

cf. [Addario-Berry, Broutin, Goldschmidt 2012]. Hence, as in [C. 2012],

$$
\left(n^{-1 / 3} X_{t n}^{n}\right)_{t \geq 0} \rightarrow\left(X_{t}\right)_{t \geq 0}
$$

HEAVY-TAILED RCM ON FRACTALS \#1

Suppose that $P(c(x, y) \geq u)=u^{-\alpha}$ for $u \geq 1$ and some $\alpha \in(0,1)$. For gaskets, can then check that resistance homogenises [C., Hambly, Kumagai 2016]

$$
\left(V_{n},(3 / 5)^{n} R_{n}, 3^{-n} \mu_{n}\right) \rightarrow(F, R, \mu)
$$

where:
-(up to a deterministic constant) R is the standard resistance, - μ is a Hausdorff measure on fractal.

Hence VSRW converges to Brownian motion (spatial scaling assumes graphs already embedded into limiting fractal):

$$
\left(X_{t 5^{n}}^{n}\right)_{t \geq 0} \rightarrow\left(X_{t}\right)_{t \geq 0}
$$

HEAVY-TAILED RCM ON FRACTALS \#2

It further holds that

$$
\nu_{n}:=3^{-n / \alpha} \sum_{x \in V_{n}} c(x) \delta_{x} \rightarrow \nu=\sum_{i} v_{i} \delta_{x_{i}}
$$

in distribution, where $\left\{\left(v_{i}, x_{i}\right)\right\}$ is a Poisson point process with intensity $c v^{-1-\alpha} d v \mu(d x)$. Hence CSRW (and discrete time random walk) converges:

$$
\left(X_{t(5 / 3)^{n} 3^{n / \alpha}}^{n, \nu_{n}}\right)_{t \geq 0} \rightarrow\left(X_{t}^{\nu}\right)_{t \geq 0}
$$

where the limiting process X^{ν} is the Fontes-Isopi-Newman (FIN) diffusion on the limiting fractal.

Similarly scaling result for heavy-tailed Bouchaud trap model.

HEAT KERNEL ESTIMATES FOR FIN DIFFUSION

If $\mu\left(B_{d}(x, r)\right) \asymp r^{d_{f}}, d(x, y) \asymp R(x, y)^{\beta}$, then heat kernel is of form:

$$
\mathbf{E}\left(p_{t}^{\nu}(x, y)\right) \asymp c_{1} t^{-d_{s} / 2} \exp \left\{-c_{2}\left(\frac{d(x, y)^{d_{w}}}{t}\right)^{\frac{1}{d_{w}-1}}\right\}
$$

where

$$
d_{w}:=\frac{d_{f}}{\alpha}+\frac{1}{\beta}, \quad d_{s}:=\frac{2 d_{f}}{\alpha d_{w}} .
$$

NB. Can only prove for $\alpha>\alpha_{c}$.

Almost-surely (for any $\alpha \in(0,1)$):
Log fluctuations above diagonal locally ($O(1)$ globally);
Loglog fluctuations below diagonal locally (log globally);
No fluctuations in off-diagonal decay term.

